

READING RESPONSE: QUESTIONS/THOUGHTS

- I do wonder if there are instances in which exaggerated visuals are justified: for example, public awareness campaigns, in which we play by the different rules of emotional psychology rather than statistical evidence in order to move an audience that traditionally bypasses statistics of growing issues.
- "Cosmetic decoration, which frequently distorts the data, will never salvage an underlying lack of content.": I don't agree with the generalized arguments made in the reading that lack of data cannot be enhanced by extra graphics and art, even when those graphics become the central component of the visualization.

3

4

LAST TIME: EXPLORATORY DATA ANALYSIS

LESSON: EDA IS AN ITERATIVE PROCESS

1. Construct graphics to address questions
2. Inspect "answer" and assess new questions
3. Repeat!

Transform the data appropriately (e.g., invert, log)
"Show data variation, not design variation" -Tufte

POLARIS [Stolte 2002]

Started as a Stanford research project by C. Stolte, D. Tang \& P. Hanrahan

POLARIS/TABLEAU APPROACH

Insight: simultaneously specify both database queries $\&$ visualization
Choose data, then visualization, not vice versa
Use smart defaults for visual encodings (Like APT)

Can also suggest more encodings upon request (ShowMe)

TABLEAU DEMO

Dataset:

Federal Elections Commission Receipts
Every Congressional Candidate from 1996 to 2002
4 Election Cycles
9216 Candidacies

DATA TYPES

Year (Qi)
Candidate Code (N)
Candidate Name (N)
Incumbent / Challenger / Open-Seat (N)
Party Code (N) [1=Dem,2=Rep,3=Other]
Party Name (N)
Total Receipts (Qr)
State (N)
District (N)

This is a subset of the larger data set available from the FEC, but should be sufficient for the demo

11

HYPOTHESES

What might we learn from this data?

Have receipts increased over time?
Do democrats or republicans spend more?
Candidates from which state spend the most money?

13

SPECIFYING TABLE CONFIGURATIONS

Operands are names of database fields

Each operand interpreted as a set $\{\ldots\}$
Data is either O or Q and are treated differently
Three operators:
concatenation (+)
cross product (x)
nest (/)

14

15

TABLE ALGEBRA

The operators (+, $\mathrm{x}, /$) and operands (O, Q) provide an algebra for tabular visualization

Algebraic statements are mapped to
Visualizations - trellis partitions, visual encodings
Data queries - selection, projection, group-by

In Tableau, users make statements via drag-and-drop
Users specify operands NOT operators!
Operators are inferred by data type ($0, Q$)

17

ASSIGNMENT 2: EXP. DATA ANALYSIS

Due 10/16 11:30am
Use Tableau or Vega-Lite to formulate \& answer data questions
First steps
Step 1: Pick domain \& data
Step 2: Pose questions
Step 3: Profile data
Iterate as needed
Create visualizations
See different views of data
Refine questions
Author a report
Screenshots of most insightful views (8+)
Include titles and captions for each view

18

OFFICE HOURS: MANEESH

This week (11-noon tomorrow) will hold via Zoom.
Link will be posted on class Slack.
Come introduce yourself!

19

20

22

MAPPING DATA TO VISUAL CHANNELS

Assign data fields (e.g., with N, O, Q types) to visual channels (x, y, color, shape, size, ...) for a chosen graphical mark type (point, bar, line, ...)

Additional concerns include choosing appropriate encoding parameters (log scale, sorting, ...) and data transformations (bin, group, aggregate, ...)

These options define a large combinatorial space, containing both useful and questionable charts!

EXPRESSIVENESS CRITERIA [Mackinlay 1986]

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e., the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

24

25

26

28

29

2D NOMINAL x NOMINAL

```
Cars Data
crrrer
Raw [-crone
```

Aggregate (Count)

30
2D QUANTITATIVE x QUANTITATIVE

Cars Data
 Price MPG Origin Make $\begin{array}{lllll}13,500 & 22 & \text { Japan } & \begin{array}{c}\text { Honda } \\ 7,200\end{array} & 31 \\ \text { Europe } & & \begin{array}{c}\text { BMW }\end{array} \\ 11,300\end{array}$ $\begin{array}{llll}7,200 & \text { 12 } & \text { Europe } & \text { BMW } \\ 11,300 & 12 & \text { USA } & \text { Ford }\end{array}$

31

```
2D NOMINAL x QUANTITATIVE
```



```
Cars Data Raw
```

Cars Data Raw
Price MPG Origin Make
Price MPG Origin Make
Mrrern
Mrrern
rl,200
rl,200
*)
*)
EM,

```
    EM,
```



```
    :% <lull
```

 :% <lull
 M,
    ```
    M,
```


32

33

EFFECTIVENESS CRITERIA [Mackinlay 1986]

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily perceived than the information in the other visualization.

Subject of the Perception Lecture

34

40

WHICH GRAPH IS BETTER

Government payrolls in 1937 [Huff 93]

INCLUDE ZERO IN AXIS SCALE?

42


```
AXIS TICK MARK SELECTION
```


45

HOW TO SCALE THE AXIS?

OPTION 1 : CLIP OUTLIERS

47

OPTION 2: SCALE BREAKS - CLEARLY MARKED

Poor scale break [Cleveland 85]

Well marked scale break [Cleveland 85]

OPTION 3: LOG SCALE

Scale break [Cleveland 85]

Log scale[Cleveland 85]

SCALE BREAK VS. LOG SCALE

Both increase visual resolution
Scale break - difficult to compare across break (cognitive - not perceptual - work) Log scale - direct comparisons of all data

Logarithms turn multiplications into

 additions$$
\log (x y)=\log (x)+\log (y)
$$

Equal steps on a log scale correspond to equal changes to a multiplicative scale factor

51
Linear Scale

53

54

WHEN TO APPLY LOG SCALE?

Address data skew (e.g., long tails, outliers)
Enables comparison within and across multiple orders of magnitude

Focus on multiplicative factors (not additive)
Recall that the logarithm transforms \times to + !
Percentage change, not linear difference
Constraint: positive, non-zero values
Constraint: audience familiarity?

